
The Australian National University
2600 ACT | Canberra | Australia

School of Computing

College of Engineering, Computing
and Cybernetics (CECC)

A Hierarchical Constraint for Ethi-
cal Norms in Planning Problems
— 12 pt Honours project (S2/S1 2023)

A thesis submitted for the degree
Bachelor of Advanced Computing

By:

Harry Hart

Supervisors:

Dr. Alban Grastien

Dr. Michael Norrish

October 2023

Declaration:

I declare that this work:

� upholds the principles of academic integrity, as defined in the University Academic
Misconduct Rules;

� is original, except where collaboration (for example group work) has been autho-
rised in writing by the course convener in the class summary and/or Wattle site;

� is produced for the purposes of this assessment task and has not been submitted
for assessment in any other context, except where authorised in writing by the
course convener;

� gives appropriate acknowledgement of the ideas, scholarship and intellectual prop-
erty of others insofar as these have been used;

� in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

October, Harry Hart

ii

https://www.anu.edu.au/about/governance/legislation
https://www.anu.edu.au/about/governance/legislation

Abstract

The rise of autonomous agents’ relevance in everyday life work has increasingly focused
on the question of ethical restraint. A common approach is to formalise these ethical
norms into formal constraints which we impose upon the solving agent. Using these
constraints the agent can solve for an optimal solution which adheres to these ethics,
or can check after finding a plan whether it satisfies these constraints. Unfortunately
ethical frameworks are numerous and varied, and most papers focus on one particular
set of ethics (utilitarianism, act-based deontology, virtue ethics) and then produce a
formalisation which is very specific to that philosophical model. In this project, we
create a philosophically ambivalent operator that allows us to define a structure which
we believe is intrinsic to many frameworks, a hierarchy of norms. The key difference
between many philosophical frameworks is how they rank actions within the framework,
how they judge bad, good, better, and best actions. The invariant property in this is
the existence of the hierarchy. Thus instead of focusing on formalising how to rank these
actions, we focus on communicating this ranking to the solver. Using our hierarchy
operator, a structure can be defined over a sequence of norms, with which we can check
for satisfaction from any given plan. We provide an initial (verbose) definition in first
order logic, then a more concise definition using set comprehension and sequences of
norms. Then using this sequence definition we can prove some interesting properties of
hierarchies such as concatenation, removing duplicates, maintenance of prefix structure,
and a partial order on the space of norms. We also provide an example showing how it
correctly constrains a sample plan.

iii

iv

Table of Contents

1 Introduction 1

2 Background 3
2.1 Planning Formalism . 3

2.1.1 Planning Problems . 3
2.1.2 Plans . 4
2.1.3 Modelling Constraints . 5

3 Related Work 7

4 The Hierarchical Constraint for Ethical Norms 9
4.1 Motivating Example . 9
4.2 First Order Logic Formulation . 12

4.2.1 Limitations . 13
4.3 Sequence Definition . 13

4.3.1 Definition . 13
4.3.2 Example . 14
4.3.3 Relevant Theorems . 15

5 Concluding Remarks 27
5.1 Conclusion . 27
5.2 Future Work . 27

Bibliography 29

v

vi

Chapter 1

Introduction

Autonomous machines are increasingly coming into closer contact with people in their
day to day lives. Food delivery robots and driverless taxis are starting to populate the
streets of Los Angeles. But with the rise in human-robot interaction, there has also been
the looming question of morality. The famous Moral Machine experiment tackled the
question of morality in fatal accidents with self-driving cars and through collection of
responses from 233 countries found strong trends in rating humans over animals, children
over older people, and executives over homeless people (Awad et al., 2018). But despite
these strong indications of the need for the ability to constrain autonomous planners
within ethical constraints, there does not seem to be a standardised way to formalise an
ethical framework for planners.

Many papers focus on the specifics of how different moral systems rank actions or states
and use this to formalise them into a constraint. We take a more ambivalent approach
to formalising it. Let the philosophers define how we rank the different rules; we just
communicate the ranking to the planner. Given an ethical framework, our goal is to
constrain our planner to this ethical framework. Consider Asimov’s Laws of Robotics
(Asimov, 1942), which go as follows:

1. A robot may not injure a human being or, through inaction, allow a human being
to come to harm.

2. A robot must obey the orders given it by human beings except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

If we had a planner which we wanted to constrain by these principles, how would we go
about that? If we try to naively constrain the plan by all three of them, the hierarchy
of them is not made clear. Thus in the situation where we have two plans which satisfy
disjunct parts of the framework, it is not clear which is better. In this project we will

1

1 Introduction

formalise a method of specifying a hierarchy of these constraints in a plan, and show how
they can be composed and translated to express different properties of the frameworks
within the planning space.

2

Chapter 2

Background

2.1 Planning Formalism

2.1.1 Planning Problems

We will use the SAS+ (Bäckström and Nebel, 1995) plan formulation for our planning
problems. In this formulation the “world” is represented by state variables which describe
part of the world. A state variable v can take one of certain predefined values Dv or an
undefined value u (indicating that the variable is not important). We denote the set of
predefined values and undefined as D+

v = D∪{u}. With this set of predefined values we
can define a state space:

Definition 1 (State Space Variables). Given a set of state variables V and their respec-
tive domains Dv, we define SV =

∏
v∈V Dv as the “total state space” and S+

V =
∏

v∈V D+
v

as the “partial state space”. ■

From this we can define a planning problem:

Definition 2 (Planning Problem). A planning problem is given by a tuple P = ⟨V,O, s0, s∗⟩
where:

� V = {v1, . . . , vm} is a set of state variables. Each variable v ∈ V has a domain
Dv of possible values and an extended domain D+

v = Dv ∪ {u}. Note that these
implicitly define the total and partial state space SV ,S+

V .
� O is the set of operators of the form ⟨pre, post , prv⟩. For every o ∈ O:

∀v ∈ V, pre(o)[v] ̸= u =⇒ pre(o)[v] ̸= post(o)[v] ∧ post(o)[v] ̸= u (R1)

∀v ∈ V, post(o)[v] = u ∨ prv(o)[v] = u (R2)

� s0 ∈ S+
V and s∗ ∈ S+

V denote the initial and goal states.

3

2 Background

■

Operators are defined by three partial states pre, post , and prv . The pre conditions
expresses which state variables the operator will change and what values they should
have for it to apply. The post conditions expresses the changed variables and what values
they should have after the operator is applied. The prv conditions expresses variables
which are not changed, but are required to have some value before the operator can be
applied. Thus for an operator to be applied in state S ∈ S+

v , both the pre and prv
conditions must be met in S.

2.1.2 Plans

In a planning problem P = ⟨V,O, s0, s∗⟩, a plan is a sequence of operators in O. Ac-
cording to Bäckström and Nebel, a general plan is defined as:

Definition 3 (General Plan). Given a set of variables V and a set of operators O over
V, a general plan over O is a sequence π = ⟨o1, . . . , on⟩ of operators such that ok ∈ O
for all k ∈ [1, n]. ■

This does not say anything for the plan to be good, valid or even admissible. It is
simply a sequence of operators. To define these further notions first we will define some
functions on the states.

Definition 4 (Subsumed). A state s ∈ S+
V is subsumed by another state t ∈ S+

V if:

∀v ∈ V, (s[v] = u) ∨ (s[v] = t[v])

We denote this s ⊑ t ■

Definition 5 (Union). For two state s, t ∈ S+
V we denote a new state s ⊔ t defined as:

∀v ∈ V, (s ⊔ t)[v] =

{
s[v] if t[v] = u

t[v] if s[v] = u

■

Using these operators we can define what it means for an operator to be admissible in
any particular state.

Definition 6 (Admissible Operator). Let P = ⟨V,O, s0, s∗⟩ be a planning problem.
Given an operator o ∈ O and some partial state s ∈ S+

V we say that the operator is
admissible in that state if:

(pre(o) ⊔ prv(o)) ⊑ s

■

Note that the union of two states is only defined when the intersection of defined variables
in the two states is empty. This works for the pre and prv sets of operators because they

4

2.1 Planning Formalism

are defined to be disjoint. But for more general states we further define that a state s is
updated by a state t:

Definition 7 (Updated). For two state s, t ∈ S+
V we denote a new state s ⊕ t defined

as:

∀v ∈ V, (s⊕ t)[v] =

{
t[v] if t[v] ̸= u

s[v] otherwise

And we say that s is updated by t. ■

With this we can define what the result of a plan is:

Definition 8 (Result). For a general plan π = ⟨o1, . . . , on⟩ over O and V, the function
result takes a state s and the plan π and returns:

result(s, ⟨⟩) = s,

result(s, (π; o)) =

{
result(s, π)⊕ post(o) if o is admissible in result(s, π)

s otherwise

■

Then finally, using this definition of the function result and the notation that π/k denotes
⟨o1, . . . , ok⟩, we can define what an admissible plan is:

Definition 9 (Admissible Plan). A general plan π = ⟨o1, . . . , on⟩ over O and V is
admissible in a state s ∈ S+

v if:

� π = ⟨⟩, or
� ∀k, 1 ≤ k ≤ n we have that ok is applicable in result(s, π/(k − 1))

■

But in this project we will use the term “plan” to refer more specifically to a solution:

Definition 10 (Plan). Given a planning problem P = ⟨V,O, s0, s∗⟩ a plan is a general
plan π = ⟨o1, . . . , on⟩ over V and O such that π is admissible in s0 and s∗ ⊑ result(s0, π).

■

2.1.3 Modelling Constraints

In this project we construct complext constraints with which we restrict plans. We define
a constraint as:

Definition 11 (Constraint). Given a planning problem P = ⟨V,O, s0, s∗⟩ a constraint
is a partial state c ∈ S+

V such that c ⊑ s∗. ■

Now the content of this project considers limiting a planner by a constraint. If we wish
to constrain our planner by some rule which says “Don’t injure humans”, then implicitly
we want that constraint to hold true for all steps in the plan. So we can formalise this
by defining the “models” operator:

5

2 Background

Definition 12 (Models). Given a planning problem P = ⟨V,O, s0, s∗⟩ and a constraint
c ⊑ s∗, we say a plan π models a constraint if:

∀ok ∈ π, c ⊑ (post(ok) ⊔ prv(ok))

We denote it π |= c. ■

6

Chapter 3

Related Work

The work most closely related to ours is (Lindner et al., 2020). In this work they
explore formalising what it means for a plan to be morally permissible under different
ethical frameworks. They offer formalizations within planning for utilitarianism under
consequentialism, act-based and goal-based deontological principles, and the principle
of double effect. Each of these ethical frameworks in formalization fall into one of two
categories: qualitative and quantitative absolute judgements. By this we mean that for
each framework they either have some a priori list of “moral” actions/states and then
to implement the framework they ensure that none of the actions taken are immoral, or
the goal state is not immoral, etc. The second category is that there is some assumption
of a utility function u which can take an action/state and give it a quantitivate “moral
value”. Then using this they can perform similar checks as before on the plans. The
limitation of this work that we address is that it does not consider disjunct plans with
competing moral satisfaction. It may be the case that there are two plans which result
in different immoral actions being taken. According to a principle like their Asimovian
Principle as long as there is no other plan which results in fewer immoral actions being
taken in the goal state, then it is morally permissible. But there may in fact be different
degrees of immoral actions and satisfying some are more important.

Another related work is (Grastien et al., 2021). They focus on constraining an agent
to actions which are unambiguously permissible. They define a set of actions which
are permissible, then a set of observations, and a plan is acceptable (unambiguously
permissible) if the probability of it being an impermissible plan given the observations
is less than some epsilon.

Pr(impermissible | σ) =
∑

π′∈Πi(P)

Pr(π′ | σ) ≤ ϵ

The idea of this work is that it is not only important for an agent to be acting ethically,
but also unambiguously ethical. Autonomous agents should be acting in such a way

7

3 Related Work

that any observer can be reasonably confident that they are acting ethically without
further investigation. This is key to establishing trust in autonomous systems and for
easy explanation and assessment of plans executed by these agents. This type of ethical
formulation is closest to deontology where actions are judged as intrinsically good as
opposed to some form of consequentialism. This runs into some complexities with regards
to some actions which may be good in some contexts, but not in others. The authors
address this by noting that actions that are morally ambiguous in this way can be
“differentiated with a more fine grained description”(Grastien et al., 2021). For example
splitting the action “pick fruit from a tree” into “pick fruit from a tree that is yours”
and “pick fruit from a tree that is not yours” which splits it into two actions which
are permissible and impermissible respectively. My work will hopefully open up the
possibility for more varied ethical frameworks to be defined as acceptable through the
hierarchy constraint. Instead of actions being permissible or impermissible, we may
define them as a gradient of morality in relation to the other choices in the problem.

A final interesting piece of work in a similar vein is (Govindarajulu et al., 2019). The
authors use an ethical framework which lends itself much less to formalisation in plan-
ning, virtue ethics. Virtue ethics determines that the best action in a situation is the
one that a virtuous person would perform. They formalise notions of “admiration”,
“traits”, and “learning traits”. Using this they define an n-virtuous agent to be one
which is admired or considered an “exemplar” by n other agents. Then an n-virtue is a
trait possessed by at least n virtuous agents. This presents an interesting approach of
agents “learning” in some sense the implicit ethical framework present in other agents
(or in fact humans). This presents an interesting use case in that many agents may learn
some implicit “virtuous traits” from observing how a human acts in the problem, then
emulate those by generalising them to virtues internally. This is not the approach we
take in this work, where we explicitly lay out our ethical framework;Govindarajulu et al.
compute it through observation, but it represents an ethical framework separate from
consequentialism and deontology which may be difficult to formalize using this work.

8

Chapter 4

The Hierarchical Constraint for Ethical
Norms

4.1 Motivating Example

Before we begin with the definitions, let’s consider a motivating example so that we
know what we are striving for. Consider the classic trolley problem, modified such that
we have some autonomous agent working the lever to switch tracks. The track switching
machine in this case is a planner and is given the timetable for the trains as well as
information about the track status. It interprets the timetable as orders from its human
masters and then tries to satisfy them exactly by creating plans for track switching as
trains approach.

Now our moral problem arises when a nefarious agent has tied someone to the tracks
that the trolley is heading down. If the track is not switched it will head down track A
and kill the person on the tracks, yet the trolley is large enough and is going fast enough
to continue down the track and arrive at Station A on time. If the planner switches the
tracks to save the person the trolley will head down track B and will arrive at the wrong
station throwing off the whole timetable. See Figure 4.1 for the state of the problem.

Now obviously we value human life over the timetable as the human planners, and so
we want to encode this basic set of ethics into our track switching robot. We will use a
well known set of rules to do this, Asimov’s Laws of Robotics from his 1942 short story
“Runaround” (Asimov, 1942):

(A) A robot may not injure a human being or, through inaction, allow a human being
to come to harm.

(B) A robot must obey the orders given it [sic] by human beings except where such
orders would conflict with the First Law.

9

4 The Hierarchical Constraint for Ethical Norms

Start Junction Station A

Station B

Track A

Track
B

Figure 4.1: Our simplified trolley problem

(C) A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

So we want some way to specify the hierarchy (A) → (B) → (C). But this only captures
part of the hierarchy determined in the rules. Some combinations of the rules are more
favourable than others, e.g. π |= (A) ∧ (B) is better than π |= (A) ∧ (C). We can
visualise the full hierarchy if we imagine that the space of plans which model each norm
as a coloured region, then the full hierarchy can be seen in Figure 4.2.

The first step in defining this hierarchy is capturing the idea of doing a constraint to
the best of its ability. Consider we have a norm for a car driving on the road “Don’t
break any road rules”. This is certainly true for most driving, but in a potentially life
threatening situation, we certainly would prefer that the driver breaks this norm instead
of injuring someone. So if we take the world of admissible plans W which don’t injure
someone, we want to be able to specify “If possible given a set of plans, don’t break any
road rules”. This will bring us to our first and most fundamental construct, try.

Definition 13 (Try). For any plan π ∈W for some world W of admissible plans, given
a constraint c ∈ S+

V we say that π |= try(c,W) if:

(∃π′ ∈W,π′ |= c) =⇒ π |= c

■

So this models the “if possible” principle. Another piece of notation used in further
definitions is

Definition 14 (Constraint Set). Given some set of plans W and some constraint c we
have:

W |c = {π ∈W | π |= c}

10

4.1 Motivating Example

Robot Unharmed

Orders Obeyed

Person Unharmed

1

2

3

4

5

6

7

8

Figure 4.2: Visualising the Hierarchy of Asimov’s Laws. Each region is numbered in
order of preference with 1 being the most preferable plan and 8 the least
preferable. It is composed of three overlapping coloured regions representing
a region of plans where some condition is true (e.g. “Person Unharmed”).
The state of each condition is also represented symbolically with a small icon.

11

4 The Hierarchical Constraint for Ethical Norms

■

Now we must extend it to a hierarchy.

4.2 First Order Logic Formulation

The first formulation of this hierarchy is purely built on first order logic. It is first
defined in terms of two norms α and β representing constraints to create a definition for
some ordering function:

π |= ◁(α, β,W)

This function defines in first-order-logic that we would prefer to achieve α over β. It is
defined as follows

Definition 15 (Supercedes). For some planning problem P = ⟨V,O, s0, s∗⟩, given a set
of admissible plans W and a plan π ∈ W . For two constraints α, β ∈ S+

V we say that π
models α supercedes β if the following holds:

(try(α,W)) ∧ (4.1)

((∃π′ ∈W,π′ |= (α ∧ β)) =⇒ π |= β) ∧ (4.2)

(((∀π′ ∈W,π′ ̸|= α) ∧ (∃π′ ∈W,π′ |= β)) =⇒ π |= β) (4.3)

We denote this π |= ◁(α, β,W). ■

This quite a cumbersome expression, but we can express the clauses in natural language
as:

1. If possible, you must satisfy α (no matter what).
2. If it’s possible to satisfy α and β, you must satisfy β.
3. If it’s not possible to satisfy α but it is possible to satisfy β, you must satisfy β.

Using this we are able to specify a two constraint hierarchy. We can extend this to more
stages of hierarchy, for example we can define π |= ◁(α, β, γ,W):

(try(α,W)) ∧
((∃π′ ∈W,π′ |= (α ∧ β)) =⇒ π |= β) ∧

(((∀π′ ∈W,π′ ̸|= α) ∧ (∃π′ ∈W,π′ |= β)) =⇒ π |= β) ∧
((∃π′ ∈W,π′ |= (α ∧ β ∧ γ)) =⇒ π |= γ) ∧

(((∀π′ ∈W,π′ ̸|= β) ∧ (∃π′ ∈W,π′ |= (α ∧ γ))) =⇒ π |= γ) ∧
(((∀π′ ∈W,π′ ̸|= α) ∧ (∃π′ ∈W,π′ |= (β ∧ γ))) =⇒ π |= γ) ∧

(((∀π′ ∈W,π′ ̸|= α ∧ π′ ̸|= β) ∧ (∃π′ ∈W,π′ |= γ)) =⇒ π |= γ)

12

4.3 Sequence Definition

This method is essentially enumerating all the possible states of the world of plans, and
then specifying preferences that way. Clearly this grows at roughly 2n where n is the
number of constraints in the hierarchy.

4.2.1 Limitations

The main limitation of this method is the complexity of the extension to more constraints
as the hierarchy grows. There is no concise way to define the full form of the constraint
and the number of terms grows exponentially. Ideally, even if the performance of the
constraint is the same we would like a concise and equivalent definition. This leads us
into a new approach for defining our hierarchy which is suitable for defining any number
of constraints.

4.3 Sequence Definition

4.3.1 Definition

Consider this new definition for hierarchical norms in terms of a sequence. Let our norms
be ordered in a sequence:

(an)
N
n=1

This order describes the order of importance that we put on each of the norms. Placing
the most important at the start a1 and least important at aN . Now we can define the
hierarchy of norms as such:

Definition 16 (Hierarchy). For some planning problem P = ⟨V,O, s0, s∗⟩, some set
of plans W , and some plan π ∈ W . Given an ordered sequence of constraints A =
(an)

N
n=1, N ≥ 1 we say that the plan π models the hierarchy A if it models the relative

constraint H :W → S+
V defined recursively as:

π |= H((ai)
N
i=1,W) ⇐⇒

{
π ∈W |try(a1,W) N = 1

π |= H
(
(ai)

N
i=2,W |H((ai)1i=1,W)

)
N > 1

■

This recursive definition allows us to use sequence proofs to give properties that we
might want. Note that the set notation W |H((an)kn=1)

is the set of plans π ∈W such that

π |= H((an)
k
n=1) is true. We can also expand this definition into a more verbose version:

π |= H((ai)
N
i=1,W) ⇐⇒ π ∈W |try(a1,W)|try(a2,W |try(a1,W))| . . .|try(aN ,W |try(a1,W)|...)

Using this we can expand series immediately, for example π |= H((a, b, c),W):

π |= H((a, b, c),W) = π ∈W |try(a,W)|try(b,W |try(a,W))|try(c,W |try(a,W)|try(b,W |try(a,W))
)

13

4 The Hierarchical Constraint for Ethical Norms

4.3.2 Example

To show the basic ability of this hierarchy constraint we will use the example trolley
problem. So that we can formally explore this, we will define our trolley problem domain.
Our state variables will be:

� p = {alive, dead}
� t = {A,B}
� tp = {start, end}

These represent the state of the person on the tracks, which track the trolley is on,
and whether the trolley is at the start or end of the tracks. Then our trolley has three
operators available to it O = {switch, advance1, advance2} which are defined as:

switch = ⟨{t = A}, {t = B}, {p = alive}⟩
advanceA = ⟨{tp = start, p = alive}, {tp = end, p = dead}, {t = A}⟩
advanceB = ⟨{tp = start, p = alive}, {tp = end, p = alive}, {t = B}⟩

Finally the initial state is s0 = {p = u, t = A, tp = start} and the goal state is s∗ =
{p = u, t = u, tp = end}. Note that the goal is just to get from the start to the end, not
specifying which track to end on or whether to save the person. Now encoding Asimov’s
laws into this would imply a hierarchy:

1. p = alive
2. t = A

Because the first law states not to harm a human, but the second law states to follow
any human’s orders (the timetable requiring the trolley to arrive at station A). Then we
can encode this framework by requiring that any solution to this problem π ∈ W must
be constrained by:

π |= H((p = alive, t = A),W)

To see how this constrains us to the laws, let’s consider the plans:

π1 = ⟨advanceA⟩
π2 = ⟨switch, advanceB⟩

Now obviously according to our human understanding of the laws, we prefer π2, but do
our constraints align with that?

π1 |= H((p = alive, t = A),W)

|= H((t = A),W |H((p=alive),W))

|= H((t = A),W |try(p=alive,W))

=⇒ π ∈W |try(p=alive,W)|try(t=A,W |try(p=alive,W))

=⇒ π ∈ {π′ ∈W |try(p=alive,W)|π′ |= try(t = A,W |try(p=alive,W))}

14

4.3 Sequence Definition

Since π2 ̸∈ W |try(p=alive,W) and W |try(p=alive,W) ⊆ W |try(p=alive,W)|try(t=A,W |try(p=alive,W))

then:

=⇒ π1 ̸∈W |try(p=alive,W)|try(t=A,W |try(p=alive))

=⇒ π1 ̸|= H((p = alive, t = A),W)

Without expanding any further, here we can see that π1 is already eliminated because
there are other plans which model p = alive (namely π2) but it does not satisfy this
constraint.

4.3.3 Relevant Theorems

Using this definition we can prove some nice properties of these hierarchical norms.

Equivalence with Original Definition

The first and most pertinent theorem to tying this work together is whether this new
definition is equivalent to the first order formulation in the 2-case. Let’s prove this.

Theorem 1 (Equivalence). Let P = ⟨V,O, s0, s∗⟩ be a planning problem with a set of
admissible plans W . Given a, b ∈ S+

V constraints and π ∈ W an admissible plan we
have:

π |= ◁(a, b,W) ⇐⇒ π |= H((a, b),W)

Proof. We will go from left to right:

LHS = π |= ◁(a, b,W)

= π |= try(a,W)

∧ ((∃π′ ∈W,π′ |= (a ∧ b)) =⇒ π |= b)

∧ (((∀π′ ∈W,π′ ̸|= a) ∧ (∃π′ ∈W,π′ |= b)) |= π |= b)

= π |= try(a,W)

∧ ((∃π′ ∈W |a, π′ |= b) =⇒ π |= b)

∧ (((∀π′ ∈W,π′ ̸|= a) ∧ (∃π′ ∈W,π′ |= b)) |= π |= b)

We need to reduce this to a try clause, so we will use a lemma:

Lemma 1 (Try Set Expansion). For a plan π ∈W , constraint a, b the following holds:

((∃π′ ∈W |a, π′ |= b) =⇒ π |= b) ∧ (((∀ψ′ ∈W,ψ′ ̸|= a) ∧ (∃π′ ∈W,π′ |= b)) =⇒ π |= b)

⇐⇒
π |= try(b,W |try(a,W))

15

4 The Hierarchical Constraint for Ethical Norms

Proof.

π |= try(b,W |try(a,W))

⇐⇒ (∃π′ ∈W |try(a,W), π
′ |= b) =⇒ π |= b

⇐⇒ (∃π′ ∈ {ψ ∈W | (∃ψ′ ∈W,ψ′ |= a =⇒ ψ |= a)}, π′ |= b) =⇒ π |= b

Now we can split the set into the two cases:

⇐⇒ ((∃ψ′ ∈W,ψ′ |= a) =⇒ ((∃π′ ∈ {ψ ∈W | ψ |= a}, π′ |= b) =⇒ π |= b))

∧ ((∀ψ′ ∈W,ψ′ ̸|= a) =⇒ ((∃π′ ∈W,π′ |= b) =⇒ π |= b))

But since if ¬(∃ψ′ ∈W,ψ′ |= a) then (∃π′ ∈ {ψ ∈W | ψ |= a}, π′ |= b) is false. Thus we
can remove the redundant clause.

⇐⇒ ((∃π′ ∈ {ψ ∈W | ψ |= a}, π′ |= b) =⇒ π |= b)

∧ ((∀ψ′ ∈W,ψ′ ̸|= a) =⇒ ((∃π′ ∈W,π′ |= b) =⇒ π |= b))

Now we can use the fact a =⇒ (b =⇒ c) is equivalent to (a ∧ b) =⇒ c.

⇐⇒ ((∃π′ ∈ {ψ ∈W | ψ |= a}, π′ |= b) =⇒ π |= b)

∧ (((∀ψ′ ∈W,ψ′ ̸|= a) ∧ (∃π′ ∈W,π′ |= b)) =⇒ π |= b)

Thus from Lemma 1 we have that

= π |= try(a,W)

∧ ((∃π′ ∈W,π′ |= (a ∧ b)) =⇒ π |= b)

∧ (((∀π′ ∈W,π′ ̸|= a) ∧ (∃π′ ∈W,π′ |= b)) |= π |= b)

Is equivalent to:

= π |= try(a,W) ∧ π |= try(b,W |try(a,W))

Then we can reduce the second clause down to a try:

= π ∈W |try(a,W) ∧ π ∈W |try(b,W |try(a,W))

= π ∈W |try(a,W) ∩W |try(b,W |try(a,W))

= π ∈W |try(a,W)|try(b,W |try(a,W))

= π |= H((a, b),W)

16

4.3 Sequence Definition

W |a W |b

W |c

W |H((a,b,c),W)

W |H((b,c),W)

Figure 4.3: Counter-Example to the notion π |= H((a, b, c),W) =⇒ π |= H((b, c),W).

Thus we have that the two definitions are equivalent in the most basic sense of the
hierarchy of two elements. So from this we can conclude that our expansion to the
sequence definition does in fact follow our original formulation reasoning. But with this
sequence definition we can expand further with more properties.

Sub-hierarchy Theorems

These results relate to whether the integrity of the hierarchy is preserved when only
subsequences are taken. This is important for the application to ethical frameworks,
because it directly asks the question of what structure is preserved with only a subset
of the norms. If π |= H((a, b, c),W) is it true that:

1. π |= H((a, b),W)
2. π |= H((b, c),W)
3. π |= H((a, c),W)

Straight away we can invent counter-examples for (2) and (3). A counter example for
(2) can be seen in Figure 4.3 and for (3) see the transitivity counter Figure 4.5.

To understand why these cases fall apart, consider the different ethical structures of:

17

4 The Hierarchical Constraint for Ethical Norms

A

1. Follow God’s laws
2. Preserve your own life
3. Follow the laws of

your country

B

1. Preserve your own life
2. Follow the laws of

your country

C

1. Follow God’s laws
2. Follow the laws of

your country

In the first set of rules (A), you may lay down your life for your God, but this is not
permissible in the second set (B). Then in the third set (C) you may lay down your life
for your country’s war, but in the first set (A) you may not if your God is ambivalent.

But we do have one structure preserved, which is the prefix for any hierarchy. Another
way to think of this is concatenation with another series. For any two series A =
(an)

N
n=1 and B = (bn)

M
n=1 we denote the series (a0, . . . , aN , b0, b1, . . . , bM) obtained from

concatenation as (A;B).

Theorem 2 (Prefix). For a given planning problem P = ⟨V,O, s0, s∗⟩ and a world of
admissible plans W , let A = (an)

N
n=1 and B = (bn)

M
n=1 be sequences of constraints. Then:

π |= H((A;B),W) =⇒ π |= H(A,W)

Proof. Here we will prove that any plan π satisfying a hierarchy (A;B) will also satisfy
any arbitrary prefix of that hierarchy A. We can show this through showing a subset
inclusion:

W |H((A;B),W) ⊆W |H(A,W)

To start on the left hand side:

LHS =W |H((A;B),W)

= {π ∈W | π |= H((A;B),W)}
= {π ∈W | π |= H(A,W) ∧ π |= H(B,W |H(A,W))}
=W |H(A,W)|H(B,W |H(A,W))

⊆W |H(A,W)

At first glance you might assume that:

π |= H((A;B),W) ⇐⇒ π |= H(A,W) ∧ π |= H(B,W)

But this is not the case because of the disjunct case. Consider Figure 4.4

18

4.3 Sequence Definition

Completely Overlapping Cases

World of plans
satisfying H((ai)

1
i=1,W)

World of plans
satisfying H((ai)

2
i=1,W)

World of plans
satisfying H((ai)

3
i=1,W)

Disjoint Case

World of plans satisfying H((ai)
2
i=1,W)

Figure 4.4: How the H function pares down the world of plansW . The green highlighted
section indicates the plans satisfying the constraint. Crucially when a lower
preference norm does not overlap with a higher preference norm, the “if
possible” operator ensures we take the preferable set.

Theorem 3 (Subsequent Duplicates). Let A = (an)
N
n=1 be some sequence of norms,

where ∃i ∈ [1, N] such that ai = ai+1. Then we can define a sequence with the du-
plicate removed A′ = (a1, . . . , ai, ai+2, . . . , aN). These are equivalent in terms of plan
satisfaction, that is for some plan π ∈W we have:

π |= H(A,W) ⇐⇒ π |= H(A′,W)

Proof. This will follow from a lemma about the how the sets are pared down.

Lemma 2 (Duplicate Paring). For some set of plans W and some constraint a then:

W |H((a),W)|H((a),W |H((a),W)) =W |H((a),W)

19

4 The Hierarchical Constraint for Ethical Norms

Proof.

W |H((a),W)|H((a),W |H((a),W)) = {π ∈W |H((a),W) | π |= H((a),W |H((a),W))}

= {π ∈W |H((a),W) | π ∈W |try(a,W |H((a),W))}

= {π ∈W |H((a),W) | π ∈ {ψ ∈W | ψ |= try(a,W |H((a),W))}}
= {π ∈ {ϕ ∈W | ϕ |= H((a),W)} | π ∈ {ψ ∈W | ψ |= try(a,W |H((a),W))}}
= {π ∈W | π |= H((a),W) ∧ π |= try(a,W |H((a),W))}
= {π ∈W | π |= H((a),W) ∧ ((∃π′ ∈W |H((a),W), π

′ |= a) =⇒ π |= a)}

Since any π ∈W such that π |= a will be inW |H((a),W) we have that (∃π′ ∈W |H((a),W), π
′ |=

a) is equivalent to (∃π′ ∈W,π′ |= a).

= {π ∈W | π |= H((a),W) ∧ ((∃π′ ∈W,π′ |= a) =⇒ π |= a)}
= {π ∈W | π |= H((a),W) ∧ π |= try(a,W)}
= {π ∈W | (π ∈ {ψ ∈W | ψ |= try(a,W)}) ∧ π |= try(a,W)}
= {π ∈W | π |= try(a,W) ∧ π |= try(a,W)}
= {π ∈W | π |= try(a,W)}
=W |H((a),W)

Now if we expand the left hand side:

π |= H(A,W)

⇐⇒ π ∈W |try(a1,W)|try(a2,W |try(a1,W))| . . .|try(ai,W |try(a1,W)|...)|try(ai+1,W |try(a1,W)|...|try(ai,W |try(a1,W)|...)
)| . . .

⇐⇒ π ∈W |try(a1,W)|try(a2,W |try(a1,W))| . . .|try(ai,W |try(a1,W)|...)|try(ai,W |try(a1,W)|...|try(ai,W |try(a1,W)|...)
)| . . .

Now by Lemma 2 we can remove the duplicated element.

⇐⇒ π ∈W |try(a1,W)|try(a2,W |try(a1,W))| . . .|try(ai,W |try(a1,W)|...)| . . .

⇐⇒ π |= H(A′,W)

Theorem 4 (Duplicates). Let A = (an)
N
n=1 be some sequence of norms, where ∃i, j ∈

[1, N] such that ai = aj and i < j. Then we can define a sequence with the duplicate
removed A′ = (a1, . . . , ai, . . . , aj−1, aj+1, . . . , aN). These are equivalent in terms of plan
satisfaction, that is for any plan π ∈W we have:

π |= H(A,W) ⇐⇒ π |= H(A′,W)

20

4.3 Sequence Definition

Proof. Consider the expansion of the left hand side:

π |= H(A,W) ⇐⇒ π ∈ {ψ ∈W |try(a1,W)|... | ψ |= try(aN ,W |try(a1,W)|...)}

We move terms from the subscript on the left hand side to the right hand side such that
we have up to ai on the left.

π |= H(A,W) ⇐⇒ π ∈ {ψ ∈W |try(a1,W)|...|try(ai−1,W |...) | ψ |= try(ai,W |...) ∧ . . .
∧ ψ |= try(aj ,W |try(a1,W)|...) ∧ . . .
∧ ψ |= try(aN ,W |try(a1,W)|...)}

Note that for each world set in the sequenceW ⊇W |try(a1,W) ⊇W |try(a2,W |try(a1,W)) ⊇

Thus the world set in try(ai,W |try(a1,W)|...) will be a superset of try(aj ,W |try(a1,W)|...).
But consider the following lemma:

Lemma 3 (Try Superset). For some constraint a ∈ S+
V and some sets of plans W,W ′

such that W ′ ⊆W , the following is true:

π |= try(a,W) =⇒ π |= try(a,W ′)

Proof. Assume for contrapositive π ̸|= try(a,W ′), then:

π ̸|= try(a,W ′) =⇒ (∃π′ ∈W ′, π′ |= a) ∧ π ̸|= a

=⇒ (∃π′ ∈W,π′ |= a) ∧ π ̸|= a

=⇒ π ̸|= try(a,W)

Thus by Lemma 3 we have that:

try(ai,W |try(a1,W)|...) =⇒ try(aj ,W |try(a1,W)|...)

Thus:

try(ai,W |try(a1,W)|...) ∧ try(aj ,W |try(a1,W)|...) = try(ai,W |try(a1,W)|...)

And so we can safely remove the try(aj ,W |try(a1,W)|...) duplicate clause and logically it
will be equivalent.

π |= H(A,W) ⇐⇒ π ∈ {ψ ∈W |try(a1,W)|...|try(ai−1,W |...) | ψ |= try(ai,W |...) ∧ . . .
∧ ψ |= try(aj ,W |try(a1,W)|...) ∧ . . .
∧ ψ |= try(aN ,W |try(a1,W)|...)}

π |= H(A,W) ⇐⇒ π ∈ {ψ ∈W |try(a1,W)|...|try(ai−1,W |...) | ψ |= try(ai,W |...) ∧ . . .
∧ ψ |= try(aN ,W |try(a1,W)|...)}

⇐⇒ π |= H(A′,W)

21

4 The Hierarchical Constraint for Ethical Norms

Partial Order Theorems

We can think of specified chains of hierarchies as defining a partial order over the space
of ethical norms. To define a partial order it would have to satisfy:

� Reflexivity ∀π ∈W,π |= H((a, a),W)
� Antisymmetry π |= H((a, b),W) ∧ π |= H((b, a),W) =⇒ a = b
� Transitivity π |= H((a, b),W) ∧ π |= H((b, c),W) =⇒ π |= H((a, c),W)

But these direct translations will not hold immediately. We need to adjust them for
the unique structure of our ethical norm world. We will encapsulate the idea of one
norm a ∈ S+

V is “equal” to another b ∈ S+
V if they are of equal importance to our plan.

Meaning we say that they are equivalent in π ∈W if:

π |= try(a,W) ∧ try(b,W)

This encapsulates that if the two norms are possible to satisfy in this world, the plan
must equally satisfy both otherwise it is unsatisfiable. So with this we translate our
reflexivity and antisymmetry properties to:

� Reflexivity π |= H((a, a),W) =⇒ π |= try(a,W)
� Antisymmetry π |= H((a, b),W)∧π |= H((b, a),W) =⇒ π |= try(a,W)∧try(b,W)

Now we can prove these two properties.

Theorem 5 (Reflexivity). Let P = ⟨V,O, s0, s∗⟩ be a planning problem with a set of
admissible plans W . Given a ∈ S+

V constraints and π ∈W an admissible plan we have:

π ∈W,π |= H((a, a),W) =⇒ π |= try(a,W)

Proof.

π |= H((a, a),W) =⇒ π ∈W |try(a,W)|try(a,W |try(a,W))

=⇒ π ∈ {ψ ∈W |try(a,W) | ψ |= try(a,W |try(a,W))}
=⇒ π ∈ {ψ ∈W |try(a,W) | (∃ψ′ ∈W |try(a,W), ψ

′ |= a) =⇒ ψ |= a}
=⇒ π ∈ {ψ ∈W |try(a,W) | (∃ψ′ ∈W |try(a,W), ψ

′ |= a) =⇒ ⊤}
=⇒ π ∈ {ψ ∈W |try(a,W) | ⊤}
=⇒ π ∈W |try(a,W)

=⇒ π |= try(a,W)

22

4.3 Sequence Definition

Theorem 6 (Antisymmetry). Let P = ⟨V,O, s0, s∗⟩ be a planning problem with a set
of admissible plans W . Given a, b ∈ S+

V constraints and π ∈ W an admissible plan we
have:

π |= H((a, b),W) ∧ π |= H((b, a),W) =⇒ π |= try(a,W) ∧ try(b,W)

Proof.

π |= H((a, b),W) ∧ π |= H((b, a),W)

=⇒ π ∈W |try(a,W)|try(b,W |try(a,W)) ∧ π ∈W |try(b,W)|try(a,W |try(b,W))

=⇒ π ∈ {ψ ∈W | ψ |= try(a,W) ∧ ψ |= try(b,W |try(a,W)) ∧ ψ |= try(b,W) ∧ ψ |= try(a,W |try(b,W))}
=⇒ π ∈ {ψ ∈W | ψ |= try(a,W) ∧ ψ |= try(b,W)}
=⇒ π |= try(a,W) ∧ try(b,W)

Having proven those, we now want to prove transitivity. Standard transitivity would be:

π |= H((a, b),W) ∧ π |= H((b, c),W) =⇒ π |= H((a, c),W) (4.4)

But this does not hold in general because there is no implicit ordering of the norms thus
H((a, c),W) is not aware of the b norm. A counter-example showing this can be seen in
the case shown in Figure 4.5.

But we can make a slightly weaker statement along the same lines as transitivity but
fully capturing the triplet relation. This is just a special case of concatenation.

Theorem 7 (Weak Transitivity/Concatenation). Let P = ⟨V,O, s0, s∗⟩ be a planning
problem with a set of admissible plans W . Given a, b, c ∈ S+

V constraints and π ∈W an
admissible plan we have:

π |= H((a, b),W) ∧ π |= H((b, c),W) =⇒ π |= H((a, b, c),W)

Proof.

π |= H((a, b),W) ∧ π |= H((b, c),W)

=⇒ π ∈W |try(a,W)|try(b,W |try(a,W)) ∧ π ∈W |try(b,W)|try(c,W |try(b,W))

=⇒ π ∈W |try(a,W)|try(b,W |try(a,W)) ∩W |try(b,W)|try(c,W |try(b,W))

=⇒ π ∈W |try(a,W)|try(b,W |try(a,W)) ∩ {ψ ∈W |try(b,W) | ψ |= try(c,W |try(b,W))}

=⇒ π ∈ {ψ ∈W |try(a,W) | ψ |= try(b,W |try(a,W))} ∩ {ψ ∈W |try(b,W) | ψ |= try(c,W |try(b,W))}
=⇒ π ∈ {ψ ∈W | ψ |= try(a,W) ∧ ψ |= try(b,W |try(a,W))}

∩ {ψ ∈W | ψ |= try(b,W) ∧ ψ |= try(c,W |try(b,W))}
=⇒ π ∈ {ψ ∈W | ψ |= try(a,W) ∧ ψ |= try(b,W |try(a,W)) ∧ ψ |= try(b,W) ∧ ψ |= try(c,W |try(b,W))}

23

4 The Hierarchical Constraint for Ethical Norms

W |a W |b

W |c

W |H((a,c),W)

W |H((a,b),W) ∩W |H((b,c),W)

Figure 4.5: This is a counter-example to the simple transitivity statement given in Equa-
tion 4.4. The 3 regions represent the norms a, b, c. The left hand side of the
transitivity statement is shown in green, note that since W |b and W |c don’t
overlap the region W |H((b,c),W) =W |b. The right hand side is shown in blue.
Since these two regions do not overlap this is a direct counter-example to the
simple transitivity statement.

24

4.3 Sequence Definition

Now we want to prove that the expression ψ |= try(a,W)∧ ψ |= try(b,W |try(a,W))∧ ψ |=
try(b,W) ∧ ψ |= try(c,W |try(b,W)) is equivalent to (∃ψ′ ∈ W |try(a,W)|try(b,W |try(a,W)

, ψ′ |=
c) =⇒ ψ |= c. We will do this as a proof by contradiction. Assume for contradiction:

(∃ψ′ ∈W |try(a,W)|try(b,W |try(a,W)
, ψ′ |= c) ∧ ψ ̸|= c

So:

∃ψ ∈W |try(a,W)|try(b,W |try(a,W)), ψ |= c

=⇒ ∃ψ ∈ {ψ ∈W |try(a,W) | ψ |= try(b,W |try(a,W))}, ψ |= c

=⇒ ∃ψ ∈ {ψ ∈W | ψ |= try(a,W) ∧ ψ |= try(b,W |try(a,W))}, ψ |= c

=⇒ ∃ψ ∈ {ψ ∈W | ψ |= try(a,W) ∧ (∃ψ′ ∈W |try(a,W), ψ
′ |= b) =⇒ ψ |= b}, ψ |= c

But since π |= try(a,W) ∧ π |= try(b,W) we know that:

W |a ∩W |b ̸= ∅ ∨W |b = ∅

Thus since we know there must be an overlap given by π, we have that this overlap
must be the intersection W |a ∩W |b or W |b = ∅, both of these are trivially a subset of
W |try(b,W).

∃ψ ∈W |try(a,W)|try(b,W |try(a,W)), ψ |= c

=⇒ ∃ψ ∈ {ψ ∈W | (∃ψ′ ∈W,ψ′ |= b) =⇒ ψ |= b}, ψ |= c

=⇒ ∃ψ ∈W |try(b,W), π |= c

=⇒ ψ |= c

=⇒ ⊥

Thus we have proven the equivalence by contradiction.

=⇒ π ∈ {ψ ∈W | (∃ψ′ ∈W |try(a,W)|try(b,W |try(a,W)
, ψ′ |= c) =⇒ ψ |= c}

=⇒ π ∈W |try(a,W)|try(b,W |try(a,W))|try(c,W |try(a,W)|try(b,W |try(a,W))
)

=⇒ π |= H((a, b, c),W)

Thus we have the modified version of transitivity holding. So we have some form of a
partial order upon the set of constraints. This is potentially useful as the hierarchies
studied become more complex. For example consider the framework given by:

π |= H((a, b, c),W) ∧H((a, b, d),W) ∧H((e),W)

This creates a non-linear ordering we can visualise it by drawing the hierarchies as
directed acyclic graphs, an example of this can be seen in Figure 4.6. Future work could
explore the translation between the logical form of this constraint and the DAG’s created
by them.

25

4 The Hierarchical Constraint for Ethical Norms

a

b

c d

e

Figure 4.6: A directed acyclic graph representing the complex partial order on the norms
a, b, c, d, e given by π |= H((a, b, c),W) ∧H((a, b, d),W) ∧H((e),W).

26

Chapter 5

Concluding Remarks

5.1 Conclusion

The goal of this project is to create an operator which allows us to specify a hierarchy
of norms to constrain a plan to an ethical framework. In this project we construct the
operator ◁(a, b,W) which takes two norms and constructs a first order constraint for
plans to maintain the hierarchy a ≻ b. Then we construct a more powerful but still
equivalent form of this operator H(A,W). This takes a sequence of norms A = (ai)

N
i=1

and then implements this as a constraint over some plan π by restricting the world of
plans W to only those which satisfy the hierarchy. The first order form of the hierarchy
we first came across in this project was not particularly useful in the final work but did
serve as the ground work for the sequence definition later. The work in this project
established the hierarchy function as useful in constructing an ethical framework as
demonstrated through Asimov’s Laws in the trolley problem. The body of this work
proved that this hierarchy is robust to the removal of duplicates. It proved that we are
able to take prefixes and concatenate sequences and maintain the framework. Finally
we use the models function in conjunction with the hierarchy operator to construct a
kind of partial order on the set of norms. These theorems serve to illustrate the richness
of the operator.

5.2 Future Work

The full use of all of the properties proven was not included in this project and for future
work on this operator these should be explored. The main work that still needs to be
done is:

1. Exploring more complex hierarchies as mentioned at the end of the last section in
Figure 4.6

27

5 Concluding Remarks

2. Proving the Time and Space complexity of this operator
3. Implementing formally in a planner with differing ethical frameworks.

Because this operator uses many quantifiers which require checking the whole space of
plans, this suggests that both the time and space complexity of using this operator may
be unreasonable. Ideally future work would theoretically prove a bound on this complex-
ity, and perhaps provide an implementation in some planning domain to demonstrate
it in use. This operator offers a richness in properties and it would be rewarding to
implement it using different ethical frameworks such as utilitarianism and act-based de-
ontology to explore the full ability of it. It may at least provide an avenue of search in
the pursuit of ethical machines.

28

Bibliography

Asimov, I., 1942. Runaround. Street & Smith. [Cited on pages 1 and 9.]

Awad, E.; Dsouza, S.; Kim, R.; Schulz, J.; Henrich, J.; Shariff, A.; Bonne-
fon, J.-F.; and Rahwan, I., 2018. The moral machine experiment. Nature, 563,
7729 (2018), 59–64. [Cited on page 1.]

Bäckström, C. and Nebel, B., 1995. Complexity results for planning. Computational
Intelligence, 11 (1995), 625–656. doi:10.1111/j.1467-8640.1995.tb00052.x. https:

//doi.org/10.1111/j.1467-8640.1995.tb00052.x. [Cited on pages 3 and 4.]

Govindarajulu, N. S.; Bringsjord, S.; Ghosh, R.; and Sarathy, V., 2019.
Toward the engineering of virtuous machines. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, 29–35. [Cited on page 8.]

Grastien, A.; Benn, C.; and Thiébaux, S., 2021. Computing plans that signal
normative compliance. In Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, 509–518. [Cited on pages 7 and 8.]

Lindner, F.; Mattmüller, R.; and Nebel, B., 2020. Evaluation of the moral
permissibility of action plans. Artif. Intell., 287 (2020), 103350. doi:10.1016/j.artint.2
020.103350. https://doi.org/10.1016/j.artint.2020.103350. [Cited on page 7.]

29

https://doi.org/10.1111/j.1467-8640.1995.tb00052.x
https://doi.org/10.1111/j.1467-8640.1995.tb00052.x
https://doi.org/10.1016/j.artint.2020.103350

	Introduction
	Background
	Planning Formalism
	Planning Problems
	Plans
	Modelling Constraints

	Related Work
	The Hierarchical Constraint for Ethical Norms
	Motivating Example
	First Order Logic Formulation
	Limitations

	Sequence Definition
	Definition
	Example
	Relevant Theorems

	Concluding Remarks
	Conclusion
	Future Work

	Bibliography

